NASA successfully tested a novel Rotating Detonation Rocket Engine (RDRE)
NASA has achieved a new benchmark in developing an innovative propulsion system called the Rotating Detonation Rocket Engine (RDRE). Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, successfully tested a novel, 3D-printed RDRE for 251 seconds (or longer than four minutes), producing more than 5,800 pounds of thrust.
RDRE’s first hot fire test was performed at Marshall in the summer of 2022. That test produced more than 4,000 pounds of thrust for nearly a minute. The primary goal of the latest testis to better understand how to scale the combustor to different thrust classes, supporting engine systems of all types and maximizing the variety of missions it could serve, from landers to upper stage engines to supersonic retropropulsion, a deceleration technique that could land larger payloads – or even humans – on the surface of Mars.
The RDRE differs from a traditional rocket engine by generating thrust using a supersonic combustion phenomenon known as a detonation. This design produces more power while using less fuel than today’s propulsion systems and has the potential to power both human landers and interplanetary vehicles to deep space destinations, such as the Moon and Mars.
The RDRE incorporates the NASA-developed copper-alloy GRCop-42 with the powder bed fusion additive manufacturing process, allowing the engine to operate under extreme conditions for longer durations without overheating.
Reference
- NASA’s 3D-printed Rotating Detonation Rocket Engine Test a Success - NASA
- NASA Validates Revolutionary Propulsion Design for Deep Space Missions - NASA
Comments